EXPECTATIVAS DE LOGRO - MATEMATICA

Los logros en matemática se presentan como una construcción tridimensional integrada por:

Las Expectativas de Logro que se enuncian en el presente documento tienen en cuenta estos parámetros y se han elaborado sobre la base de una simplificación de las complejidades matemáticas.

CÁLCULO

ÁLGEBRA

PROBABILIDAD

En función de lo expuesto se ha establecido una gradación de niveles de competencias que se nuclean del siguiente modo:

Organización del espacio

Organización de nociones geométricas

Geometría

     
Construcción del número

Número

Conjuntos numéricos

     
Iniciación en la medida

Construcción de la medida

Medida

En los resultados de aprendizaje esperables de los alumnos de cada ciclo, en trayecto constructivo hacia los logros finales de la E.G.B., se han integrado e interrelacionado capacidades, con el fin de producir un campo de evaluación factible y puntual, en el cual se inserta la valoración de un conjunto simple y acotado de competencias. Este proceso de estimación y valoración de resultados supone para el docente-evaluador el análisis de:

En este contexto, las Expectativas de Logro propuestas para el Área de Matemática se han formulado en términos de competencias globalizadoras que implican la integración de diversas capacidades y la presencia de múltiples contenidos. En algunos casos aparecen definidos y en otros, implícitos.

Por otra parte, en esta instancia de elaboración de Expectativas de Logro, se ha tenido en cuenta la gradación que una competencia requiere en sus ampliaciones y profundizaciones jerárquicas, a lo largo de los distintos niveles y ciclos.

Que al finalizar la Educación Inicial el alumno logre

Organización del espacio  

Construcción del

número

  • identificación y relación de formas en cuerpos y figuras
 
  • realización de conteos y establecimiento de relaciones de cardinalidad en y entre colecciones, y organización de la serie numérica, por lo menos hasta 10, en una secuencia constante.
  • resolución y creación de situaciones en el entorno inmediato estableciendo relaciones espaciales y de desplazamiento entre sujeto y objeto, entre sujetos y entre objetos, y realización de representaciones con progresivo acercamiento a la realidad.
 
  • resolución de situaciones problemáticas mediante transformaciones que impliquen agregar, reunir, repartir, quitar y separar los elementos de una colección.
     
 
  • estimación, comparación y verificación de resultados de transformaciones numéricas y espaciales.
 
  Iniciación en la medida  
 
  • reconocimiento, construcción y aplicación de distintas unidades de medidas no convencionales.
 
 
  • aplicación de unidades temporales en acontecimientos cercanos y rutinas cotidianas.
 
 
  • exposición de ideas y alternativas para resolver una situación y actuar cooperativamente con sus pares formulando propuestas de reconocimiento, uso y/o transformación espacial o numérica
 
 
  • complacencia en el hacer matemático.
 

Educación General Básica

Que al finalizar el Primer Ciclo el alumno logre:

Organización de nociones geométricas  

Construcción del

número

  • establecer relaciones espaciales en situaciones concretas y gráficas
 
  • establecer relaciones entre las unidades de distintos órdenes, leer y escribir números hasta 10.000.
  • estimación y verificación de transformaciones en cuerpos y figuras.
 
  • representación y utilización de fracciones de uso cotidiano.
  • reconocimiento y clasificación de cuerpos y figuras e identificación de sus elementos y regularidades
 
  • interpretación, resolución y producción de situaciones problemáticas sencillas aplicando las cuatro operaciones.
   
  • estimación y determinación de resultados en forma mental, por escrito y con uso de calculadora.
 
  • organización e implementación de datos en tablas y gráficos sencillos.
 
     
 

Construcción de

la medida

 
     
 
  • resolución de situaciones operando con unidades de medida no convencionales y convencionales de uso común.
 
     
 
  • aceptación, rechazo y exposición de razones sobre las acciones a desarrollar para resolver una situación numérica o geométrica. Participación activa en grupos de trabajo con respeto por los modos de intervención, sentimientos y valores propios y ajenos
 
 
  • curiosidad, interés gusto y respeto por y en el hacer matemático.
 

Que al finalizar el Segundo Ciclo el alumno logre

Geometría   Número
     
  • reconocimiento, clasificación y construcción de formas planas y espaciales, mediante el uso los elementos y útiles geométricos pertinentes a la situación planteada.
 
  • aplicación de las reglas del sistema posiciones decimal de numeración en la formación, comparación, ordenamiento, lectura y escritura de números naturales.
  • establecer relaciones y propiedades entre ángulos resolviendo situaciones en triláteros y cuadriláteros.
 
  • representación, clasificación y establecimiento de relaciones de orden y equivalencia entre fracciones y entre números decimales.
  • reconocimiento, anticipación y verificación de regularidades y simetrías en cuerpos y figuras.
 
  • resolución de situaciones problemáticas en los conjuntos de números naturales, fraccionarios y decimales.
  • interpretación, enunciación y aplicación de fórmulas de perímetros y superficies estableciendo reversibilidades operatorias.
 
  • operaciones con potencias y raíces exactas
  • estimación y determinación de resultados de situaciones operando en forma mental y/o escrita y utilizando medios tecnológicos.
   
  • resolución de situaciones problemáticas de proporcionalidad en forma gráfica y analítica.
 
  • recopilación, agrupamiento, tabulación, gratificación e interpretación de información estadística en situaciones cercanas a su interés.
 
 
  • experimentación, búsqueda de regularidades, análisis, generalización y fundamentación de las estimaciones realizadas acerca de la probabilidad de eventos sencillos.
 
 

Medida

 
     
 
  • interpretación, planteo, diseño y resolución de situaciones problemáticas usando unidades del SI.ME.L.A.
 
 
  • cálculo de perímetro y áreas de triláteros, cuadriláteros y círculos.
 
     
 
  • apreciación del valor del razonamiento lógico en consensos, disensos, y argumentaciones propias y ajenas, aplicados a la resolución de situaciones numéricas y geométricas.
  • interacción en distintos grupos respetando características individuales y aceptando o ejerciendo liderazgos.
 
 
  • Resolución de situaciones con evidencias de confianza en sus posibilidades y gusto por el quehacer matemático en todas sus formas.
 

Que al finalizar el Tercer Ciclo el alumno logre

Geometría   Conjuntos numéricos
     
  • enunciación y aplicación de relaciones y propiedades para establecer perímetros, superficies y volúmenes.
 
  • determinación de regularidades en los distintos sistemas de numeración posicionales y no posicionales y aplicación de los mismos en la formación de los números.
  • utilización de los elementos geométricos y/o tecnológicos pertinentes para realizar representaciones y construcciones bidimensionales y tridimensionales.
 
  • resolución de situaciones problemáticas usando los distintos conjuntos numéricos (N, Z, Q, R), seleccionando el tipo de cálculo más adecuado y verificando la coherencia de las estrategias y razonamientos utilizados.
  • identificación y establecimiento de equivalencias, congruencias y semejanzas de figuras a través de las transformaciones planas y sus composiciones.
 
  • reconocimiento de la existencia o inexistencia de proporcionalidad en situaciones-problema e implementación de estrategias operatorias para su resolución.
 
  • recolección, organización, análisis e interpretación de datos estadísticos en tablas y gráficos.
 
 
  • elección de las estrategias adecuadas para la resolución de situaciones problemáticas que apliquen combinatoria.
 
 
  • interpretación de datos probabilísticos y valoración de sus resultados en la toma de decisiones.
 
     
 

Medida

 
     
 
  • implementación de estrategias para estimar, acotar el error en las mediciones y operar con cantidades de distintas magnitudes.
 
 
  • aplicación de diversas estrategias de resolución para hallar perímetros, áreas y volúmenes en situaciones problemáticas dadas y/o creadas.
 
     
 
  • reflexión sobre planteos, relaciones y estrategias matemáticas, emitiendo juicios de valor sobre los mismos y mejorando permanentemente las alternativas de la acción y el pensamiento.
 
 
  • enseñanza y aprendizaje de matemática con otros, mediante formas flexibles de organización e interac-ción.
 
 
  • reconocimiento, aceptación y valoración placentera de los desafíos de la ciencia matemática.
 

 

Volver